Spectroscopic Studies. Part VI.* The Infrared and Raman 1367. Spectra of 1,1-Dichloro-2-fluoroethylene, 2-Bromo-1,1-dichloroethylene, and Bromotrichloroethylene

By J. YARWOOD and W. J. ORVILLE-THOMAS

The infrared and Raman spectra of the title compounds in the vapour, liquid, and solid phases are reported. Frequency assignments have been made and structural details deduced in each case.

ALTHOUGH the infrared and Raman spectra of halogenated ethylenes ^{1,2} have been studied fairly extensively over the last fifteen years, there exist several gaps in the work on these

* Part V, R. G. Jones and W. J. Orville-Thomas, J., 1965, 4632.

¹ D. E. Mann et al., (a) J. Chem. Phys., 1954, 22, 1199; (b) ibid., 1955, 23, 2122; (c) ibid., 1957, 26, 773; (d) ibid., 1955, 23, 1989; (e) ibid., 1957, 27, 43, 51; (f) ibid., 1953, 21, 1949; (g) ibid., 1954, 22, 1586; (h) ibid., 1956, 24, 1018; (i) J. Res. Nat. Bur. Stand., 1954, A, 53, 67. ² J. R. Nielsen, (a) J. Chem. Phys., 1950, 18, 326; (b) ibid., 1950, 18, 485; (c) ibid., 1950, 18, 818; (d) ibid., 1952, 20, 1090; (e) ibid., 1952, 20, 1916; (f) ibid., 1955, 23, 1994; (g) ibid., 1957, 26, 1374; (h) ibid., 1957, 27, 264; (i) ibid., 1959, 30, 98; (j) ibid., 1959, 30, 103; (k) ibid., 1952, 26, 1566; (m) J. Mol. Spectroscopy, 1957, 1, 158.

compounds. The spectra of the brominated compounds $CBrCl=CCl_2$ and $CHBr=CCl_2$ have, so far, not been reported, whilst the only work published ³ on $CHF=CCl_2$ is incomplete and contains inaccurate assignments. Furthermore, usually only vapour-phase infrared spectra have been reported, even though many interesting, and in some cases instructive, changes occur in the spectra on change of phase.⁴⁻⁶

This work was therefore undertaken in an attempt to obtain more complete spectra and a more reliable frequency assignment for $CHF=CCl_2$ and to obtain spectroscopic data for the corresponding bromo- and the bromochloro-derivatives.

EXPERIMENTAL

Preparation of Materials.—(a) 1,1-Dichloro-2-fluoroethylene, CHF=CCl₂. Dehydrochlorination of CHClF-CHCl₂ (Arcton 131, Imperial Chemical Industries Limited, Mond Division) using ethanolic potassium hydroxide would be expected to give a mixture of isomers, CHF=CCl₂ (b. p. 37°) and CHCl=CFCl (b. p. 35°). The Arcton 131 was added dropwise with vigorous stirring and the product removed as it was formed. It was purified by fractional distillation, and its infrared spectrum showed it to be almost entirely CHF=CCl₂, n_p^{20} 1.4034 (lit., ⁷ 1.40364). This is not unexpected since the hydrogen atom attached to the same carbon as the fluorine should be the most difficult to remove.

(b) Bromotrichloroethylene, CClBr=CCl₂. Trichloroethylene was brominated and the product (CCl₂Br-CHClBr, b. p. 204°) was dehydrobrominated using a lime sludge to give the required ethylene, b. p. 145°.

$$CHCI=CCI_{2} + Br_{2} \xrightarrow{\text{U.v.}} CCI_{2}Br-CHCIBr$$
$$CCI_{2}Br-CHCIBr - HBr \xrightarrow{\text{lime}} CCIBr=CCI_{2}$$
$$aq.$$

The bromination was carried out at $40-60^{\circ}$ using liquid bromine under the influence of an ultraviolet (u.v.) lamp. Both the intermediate ethane and required ethylene were purified by fractional distillation under reduced pressure. Dehydrobromination was carried out at 100° in an atmosphere of nitrogen. Any unused trichloroethylene may give dichloroacetylene which explodes in the presence of oxygen. The required CClBr=CCl₂ boiled at $40^{\circ}/16$ mm. and it was stabilised against decomposition by using a trace of thymol. Vapour-phase chromatography (v.p.c.) showed a total of 1.5% impurity. The material was washed with 5% sodium carbonate solution and thoroughly dried before use, $n_{\rm p}^{20}$ 1.54154 (lit.,⁸ 1.5434).

(c) 2-Bromo-1,1-dichloroethylene, CHBr=CCl₂. This compound (b. p. 107°) was prepared by dehydrobrominating the ethane (b. p. 176°) obtained by the bromination of vinylidene chloride,⁹

$$CH_2=CCI_2 + Br_2 \longrightarrow CH_2Br-CCI_2Br$$

 $CH_2Br-CCI_2Br - HBr \longrightarrow CHBr=CCI_2$

No u.v. lamp was used during the bromination since this causes peroxide formation. The recommended dehydrobrominating agent is ethanolic potassium hydroxide,⁹ but to avoid the formation of explosive bromochloroacetylene a lime sludge was used in an atmosphere of nitrogen. This compound was analysed using v.p.c. after being set aside for several weeks. The compound decomposes rapidly on standing and 6% impurity was found. The material was washed with 5% sodium carbonate solution and stabilised with a trace of thymol immediately prior to use. The compound boiled at 64—66°/20 mm., $n_{\rm p}^{20}$ 1.51882 (lit.,⁹ $n_{\rm p}^{15}$ 1.52028).

³ C. J. Muelleman, K. Ramaswamy, F. F. Cleveland, and S. Sundaram, J. Mol. Spectroscopy, 1963, 11, 262.

⁴ R. E. Kagarise, Spectrochim. Acta, 1963, 19, 1371.

⁵ S. Krimm, "Infrared Spectroscopy and Molecular Structure," ed. M. M. Davies, Elsevier, London, 1963, ch. 8.

⁶ N. Sheppard, "Molecular Spectroscopy," Institute of Petroleum, London, 1955, p. 136.

⁷ A. L. Henne and E. C. Ladd, J. Amer. Chem. Soc., 1936, 58, 402; A. L. Henne and E. G. Wiest, *ibid.*, 1940, 62, 2051.

⁸ G. M. Mkryan, Izvest. Akad. Nauk Armyan, S.S.R. khim. Nauki, 1944, no. 5/6, 45.

⁹ H. van de Walle, Bull. Soc. chim. belges, 1925, 34, 10.

The infrared and Raman spectra (bands in cm.⁻¹) of 1,1-dichloro-2-fluoroethylene

Gas (i.r.)	Type	Liquid (i.r.)	Solid (i.r.)	Liquid (Raman)) Assignment	Species	Туре
$\{4777\}_{VW}$		4748vw			3104 + 1649 = 4753	A'	A-B
4752) 4384vw		4374w	$4374 \mathrm{vw}$		3104 + 1289 = 4393 3104 + 796 + 470 = 4370	A' A''	A-B
$\left\{ \begin{array}{c} 4262 \\ 4251 \end{array} \right\}_{VW}$. <i>A</i> -B	4233 w			3104 + 1131 = 4235	A'	A–B
4076 vw	.4	4061w	4077vw		3104 + 958 = 4062	A'	A–B
3766vw		3955w 3804w	3 766vw		$2 imes 1649 + 656 = 3954 \ 3104 + 443 + 268 = 3815 \ 3104 + 656 = 3760$	A' A' A'	А–В А –В А–В
3687 3676 vw 3662 3651	А-В	3649vw			$2 imes 282 + 3104 = 3668 \ 3104 + 282 + 268 = 3654$	A'	A–B
9116)		3536w 3418w			3104 + 443 = 3547 1649 + 1289 + 470 = 3408	A'' A'	C A-B
3110 3112 ms	A	3104ms	3107ms		ν(CH)	A'	A–B
5104)			2959w, sh		$2 imes \ 656 \ + \ 1649 = 2961$	A'	A-B
$2989 \\ 2973 \end{bmatrix} w$	B	2938w	2932w, sh		1649 + 1289 = 2938	A'	A-B
2902 2898 w 2882 w 2803	A	2820w			3104 - 282 = 2822	A'	A–B
2799 w	А	2780w	2792w		1649 + 1131 = 2780	A'	A-B
2621vw 2571vw		$2608 \mathrm{vw}$ $2571 \mathrm{vw}$	2611vw 2576vw		$egin{array}{rll} 1649 + 958 &= 2607 \ 2 imes 1289 &= 2578 \end{array}$	A' A'	А–В А–В
$2442 \}_{VW}$	A-B				1289 + 1131 = 2420	A'	A-B
24291		2363vw			$2 \times 958 + 443 = 2359$	$A^{\prime\prime}$	С
		2304vw			$\left\{ egin{array}{c} 1649 + 656 = 2305 \ 3104 - 796 = 2308 \end{array} ight.$	A' A''	A-B C
$2291 \\ 2286 \\ 2279 \\ w$	A	2257w			$2 \times 1131 = 2262$	A'	A - B
,			2238w 2138vw		$\begin{array}{r} 1289 + 958 = 2247 \\ 2 \times 958 + 211 = 2127 \\ (1200 + 502 - 2005 \end{array}$	A' A'	A-B A-B
2117vw		2091vw			1289 + 796 = 2085 1131 + 958 = 2089	A^{\prime} A^{\prime}	A-B
		1912w	1931vw		2 imes 958 = 1916	A'	A–B
		1843w			$2 \times 443 + 958 = 1844$ $2 \times 282 + 1289 = 1853$	$A'_{A'}$	A-B A-B
		1702w, sh	1702vw		$2 \times 282 + 1131 = 1695$	$\stackrel{n}{A'}$	A - B
$1666 \\ 1661 \\ vs \\ 1654 \\ vs \\ 1654 \\ vs \\ v$	A	1649ms	1654ms	1662s	ν(C=C)	A'	A–B
1600 \	В	1580e eb	1507ms		$\int 2 imes 796 = 1592$	A'	A-B
1589∫ ^{ms}	Б	10005, 511	1415		1289 + 282 = 1571	$A'_{A'}$	A-B
		1077	1419VW		1131 + 282 = 1413 $12 \times 282 + 796 = 1360$	А А"	C^{A-B}
		1355w			1649 - 282 = 1367	$\overline{A'}$	A - B
13001			1314w, sh		*		
1290 ms	В	1289ms	1288ms 1264w, sh	1294ms	b(CHF) *	A'	А-В
		1202w			$\begin{cases} 1649 - 443 = 1206 \\ 1200 - 1200 \\ 1200 - 1200 \\$	$A^{\prime\prime}$	C
			1160w.sh		$12 \times 470 + 268 = 1208$ 958 + 211 = 1169	A'' A'	C A-B
$1157 \\ 1152 \\ vs$	A	1131vs	1124vs	1144ms	ν _s (CHF)	 A'	л-В
1144)							

Yarwood and Orville-Thomas:

			TAB	le 1 (<i>Co</i>	ntinued)		
Gas (i.r.)	Type	Liquid (i.r.)	Solid (i.r.)	Liquid (Raman)	Assignment	Species	Туре
$1067 \\ 1060 \\ w \\ 1053 \\ w$	Α	1045w			$2 \times 282 + 470 = 1034$	A'	A– B
977 971 vs	А-В	958vs	959vs		$\nu_{\rm a}({\rm CCl}_2)$	A'	$A-\!B$
$\begin{array}{c} 929\\ 925\\ 919 \end{array}$ w	С	920w	922w		656 + 268 = 924	$A^{\prime\prime}$	С
		883w 849w	911w, sh 889w		470 + 443 = 913 $2 \times 443 = 886$ 1649 - 796 = 853	A'' A' A''	$C \\ A-B \\ C$
$\left. \begin{array}{c} 808\\ 798\\ 792 \end{array} \right\}$ vs	С	796ms	797vs	812w	w(CHF)	$A^{\prime\prime}$	С
668s		656vs 529w	701w 644ms	{ 665ms 470ms	$\begin{array}{c} 2 \times 211 + 282 = 704 \\ 443 + 268 = 711 \\ \mu_{s}({ m CCl}_{2}) \\ 2 \times 268 = 536 \\ r({ m CHF}) \end{array}$	A' A' A' A'	A-B A-B A-B A-B A-B
$454 \\ 446 \\ 440 \\ vs$	С	443vs		455w, sh	w(CCl ₂)	A''	С
284w, sh		282w, sh		285s	r(CCl ₂)	41	4 D
$262 \\ vs$	С	268vs		$274\mathrm{w}$, sh	Twisting mode	A''	C^{A-B}
ر ؛ 204w		245w		211w 148w	$796 - 2 \times 282 = 232$ b(CCl ₂) 958 - 796 = 162	A'' A' A''	$C \\ A-B \\ C$

* Lattice mode combination.

Figure 1(a). Infrared spectrum of 1,1-dichloro-2-fluoroethylene vapour at 30° $(2-16\,\mu)$ and at $25^\circ~(20-50\,\mu)$

FIGURE 1(b). Infrared spectrum of 1,1-dichloro-2-fluoroethylene liquid at 25°

FIGURE 1(c). Infrared spectrum of 1,1-dichloro-2-fluoroethylene solid at -100°

Inf	rared an	d Raman spe	ctra (bands in cr	n. ⁻¹) of 2- bromo-1,1-dichlor	oethylene	
Gas (i.r.)	Туре	Liquid (i.r.) 4714vw 4648vw 4271vw 4260	Liquid (Raman)	$\begin{array}{c} \text{Assignment} \\ 3 \times 1570 = 4710 \\ 3094 + 1570 = 4664 \\ 3094 + 742 + 445 = 4281 \end{array}$	Species A' A' A''	Type <i>A-B</i> <i>A-B</i> <i>C</i>
4295vw		4200		3094 + 1203 = 4297	A'	$A-\!B$
4014vw	_	4034vw 3984vw 3828vw 3738vw 3690vw 3599vw		$\begin{array}{l} 2\times1570+906=4046\\ 3094+906=4000\\ 2\times445+3094=3984\\ 3094+742=3836\\ 3094+445+192=3731\\ 1570+1203+906=3679\\ 2\times245+3094=3584\\ 2\times245+3094=3584\\ 2\times245+3094=3584\\ 2\times245+3094=3584\\ 3584=3584$	A' A' A' A'' A''	A-B A-B A-B C A-B A-B A-B
3151w 3096ms		3479vw 3297vw 3135w 3094ms 2768vw 2764vw	{	$\begin{array}{l} 2\times192+3094=3478\\ 2\times1570+342=3482\\ 3094+192=3286\\ 2\times157=3140\\ \sim\nu(\text{C-H})\\ 1570+1203=2773 \end{array}$	A' A' A' A' A'	A-B A-B A-B A-B A-B A-B
		2670vw 2543vw 2475vw 2463vw 2398vw 2194vw 2113vw 2092vw 1934vw		$\begin{array}{l} 2\times1203+245=2651\\ 2\times1203+140=2546\\ 1570+906=2476\\ 2\times445+1570=2460\\ 2\times1203=2406\\ 1570+614=2184\\ 1203+906=2109\\ 2\times742+614=2098\\ 1203+742=1945 \end{array}$	A' A'' A' A' A' A' A' A'	A-B C A-B A-B A-B A-B A-B A-B A-B
1832		1700		Impurity		4 10
1815w		1799w		$2 \times 906 = 1812$ 1570 + 245 = 1815	$A' \\ A'$	A-B A-B
1778w		1757w 1730w		$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A' A'	$\begin{array}{c} A-B\\ A-B\end{array}$
1587 [1581∫ ^s	A–B	1570s	1597s	ν(C=C)	A'	A-B
1535)	A-B	1556vw 1517s		$\begin{array}{r} 1203 + 342 = 1545 \\ 906 + 614 = 1520 \end{array}$	A' A'	A-B A-B
1530 J	A–B	1511vw 1403vw		$2 \times 765 = 1530$ 765 + 742 = 1507 1203 + 192 = 1395	A' A'' A'	A–B C A–B
1346w	A - B	1344vw	{	1203 + 140 = 1343	$A^{\prime\prime}_{A^{\prime\prime}}$	C
1095)		1328vw 1267vw	ſ	$\begin{array}{r} 900 + 443 = 1331 \\ 1570 - 245 = 1325 \\ 742 + 342 + 192 = 1276 \end{array}$	А А' А'	С А–В А–В
1235 1225 1217	A-B	1223s		$2\times\ 614=1228$	A'	A–B
1214 \s 1208	A	1203ms	1209ms	b(CHBr)	A'	A-B
1104ms	 A–B	1082vw 1058vw 1008vw 995w 954w, sh	{	$\begin{array}{r} 900 + 240 = 1101 \\ 765 + 342 = 1107 \\ 742 + 342 = 1084 \\ 614 + 445 = 1059 \\ 765 + 245 = 1010 \\ 742 + 245 = 987 \\ 614 + 342 = 956 \\ 765 + 192 = 957 \end{array}$	A' A'' A'' A'' A' A' A''	$ \begin{array}{c} A-B\\ C\\ A-B\\ C\\ A-B\\ A-B\\ C \end{array} $
$\left. \begin{array}{c} 925 \\ 916 \end{array} ight\} \mathrm{vs}$	В	906vs	913w	$\nu_a(\text{CCl}_2)$	A'	A–B
854)		872w, sh	{	742 + 140 = 882 614 + 245 = 859	$A^{\prime\prime} A^{\prime\prime}$	C A-B
$850 \\ 846 \\ 774 $	A	838w		445 + 245 + 140 = 830	A'	А–В
770 s 766	С	765vs		w(CHBr)	$A^{\prime\prime}$	С

			TABLE 2 (0	Continued)		
Gas (i.r.)	Type	Liquid (i.r.)	Liquid (Raman) Assignment	Species	Type
752vs	A–B	742vs 706w		$ \nu_{s}(CHBr) $ 906 – 192 = 714	A' A'	A-B A-B
		$654 \mathrm{vw}$		$\begin{cases} 1570 - 906 = 664 \\ 906 - 245 = 661 \end{cases}$	A' A'	A-B A-B
$egin{array}{c} 624 \ 620 \end{smallmatrix} ight brace m s$	B	614s	608ms	$\nu_{\rm s}({\rm CCl}_2)$	A'	$A-\!B$
454s	<i>C</i> ?	445s 421w, sh		$w(CCl_2)$ 765 - 342 = 423 $(2 \times 192 = 384)$	A'' A'' A'	$C \\ C \\ A-B$
		398w		742 - 342 = 400	$\overline{A'}$	A-B
		342w 290w	$343 \mathrm{ms}$	$r(CHBr) 2 \times 140 = 280$	A' A'	А–В А – В
		345 ms	241ms 192w 140w	r(CCl ₂) b(CCl ₂) Twisting mode	A' A' A''	А-В А-В С

Infrared and Raman spectra (bands in cm.⁻¹) of bromotrichlorethylene

Gas		Liquid	Solid	Liquid			
(i.r.)	Type	(i.r.)	(i.r.)	(Raman)	Assignment	Species	Type
		3605 vw			2 imes 1563 + 499 = 3625	A'	A-B
		2962 vw	2959vw		1563 + 970 + 419 = 2952	$A^{\prime\prime}$	С
		2923vw, sh	2923vw	{	$3 \times 970 = 2910$		1 0
				l	1503 + 870 + 499 = 2938	A'	A-B
		2857 vw		{	1503 + 970 + 310 = 2849 1562 + 976 + 410 - 9869	A 4''	<i>А-Б</i> С
				($2 \times 970 \pm 876 - 2816$	А 4'	A_{-R}
		2805 vw		{	1563 + 739 + 499 = 2801	Â'	A-B
2451 vw		2439vw	2443vw		1563 + 876 = 2439	\hat{A}'	$\tilde{A}-\tilde{B}$
1996vw					2 imes 739 + 499 = 1977	A'	A-B
		1940vw	1937 vw		$2 \times 970 = 1940$	A'	A-B
		1876vw			1563 + 316 = 1879	$A^{\prime\prime}$	A - B
		1837w	1847 vw		1563 + 278 = 1841	$A^{\prime\prime}$	<i>.C</i>
		1747 vw		,	$2 \times 876 = 1752$	A'	A-B
		1708vw		{	970 + 739 = 1709	A'	A-B
15721				($1505 \pm 148 \equiv 1711$	А	A-D
1564 ms	A-B	1563 ms	$1564 \mathrm{w}$	1566vs	ν(C=C)	A'	A-B
1406w	A-B				$2 \times 499 + 419 = 1417$	$A^{\prime\prime}$	С
1005	1 D	1000	1202	ſ	970 + 316 = 1286	A'	A - B
1290W	A-D	1292W	1292W	1	876 + 419 = 1295	$A^{\prime\prime}$	С
1193.000	A_{-R}	1109.000	1100	Į	970 + 213 = 1183	A'	A-B
11000	M - D	110200	11000	l	876 + 316 = 1192	A'	A-B
1153 vw	A-B	1148vw		{	876 + 268 = 1144	$A'_{}$	A - B
		1105		ι	$2 \times 499 + 148 = 1146$	A'	A-B
1007	AD	1127vw	1009 ch		970 + 148 = 1118	A'	A-B
10371	A-D	1083 www.sh	10927w, Sh		1563 - 278 - 213 = 1009	A 4''	<i>А</i> -Б С
		1056w	1054w		$739 \pm 316 - 1055$	A'	A = R
1000	4 70	1005	1007	1004	739 + 268 = 1007	\hat{A}'	A-B
1008w	A-B	1005w	1007w	1004vw {	$2 \times 499 = 998$	$\overline{A'}$	$\overline{A}-\overline{B}$
981]	B	970s	070s	072	u(CC1)	4'	AP
974 J ¹¹¹³	Б	5105	0105	913VW	$V_{a}(CCI_{2})$	Л	л-D
007)			909w		*		
887 vs	A-B	876vs	878vs		$\nu_{a}(CClBr)$	A'	A-B
882)			950 ab		*		
			847w sh		*		
			047w, 511	ſ	$739 \pm 75 - 814$	A''	C
		812w, sh		1	499 + 316 = 815	Â'	A - B
791)							
$780 \mathrm{ms}$	A-B	777s	784s		499 + 278 = 777	$A^{\prime\prime}$	С
776)							
= (0)	4 5	-00	763w	-	*		
743 VS	A-B	739vs	738vs	748w	$\nu_{\rm s}(\rm CCIBr)$	A'	A-B
141)			798		*		
		709w sh	710vw		$419 \pm 213 \pm 75 - 707$	A'	A_{-R}
		100w, 511	110VW		710 - 210 + 10 = 101	л	A-D

			Тан	BLE 3 (Con	ntinued)		
Gas		Liquid	Solid	Liquid			
(i.r)	\mathbf{Type}	(i.r.)	(i.r.)	(Raman)	Assignment	Species	Type
		679w	682vw	{	1563 - 876 = 687 419 + 268 = 687	$A'_{A'}$	A-B A-B
		600w		,	316 + 278 = 594	<i>Â</i> ″	C^{-}
		562w		{	419 + 148 = 567 $2 \times 278 = 556$	A'' A'	C A-B
		499ms		5 04ms	$\nu_{\rm a}(\rm CCl_{2})$	$\vec{A'}$	A-B
		464vw			316 + 148 = 464	A'	A-B
		419w		417vs	w(CCl ₂)	$A^{\prime\prime}$	С
				358w	499 - 148 = 351	.4'	A-B
		316w		319s	$r(CCl_2)$	A'	A-B
		278vs			r(CClBr)	$A^{\prime\prime}$	С
		268w		270s	r(CClBr)	A'	A-B
		213w		218vs	b(CCl _a)	\mathcal{A}'	A-B
				148ms	b(CClBr)	A'	A-B
				75 vw	tw modé	A'	С
			* Latt	ice mode co	mbination.		

Instruments and Cells Used.—The infrared spectra were obtained using Grubb–Parsons G.S.2, G.S.2A, and D.M.2 grating spectrometers. Between them these three models cover the region between 5000 and 220 cm.⁻¹ and the frequencies reported are accurate to within 1-2 cm.⁻¹. The Raman spectrometer used was a Hilger and Watts model fitted with direct

FIGURE 2(a). Infrared spectrum of 2-bromo-1,1-dichloroethylene vapour at 120°

photoelectric recording equipment. The mercury arc source was filtered with sodium nitrite solution and the 4358-Å line was used for excitation.

Standard liquid and vapour absorption cells were used throughout, cæsium iodide or KRS-5 plates being used between 23 and 45 μ . Unfortunately the vapour cell used in the far-infrared region could not be heated and hence only the most volatile materials could be studied in the gas phase beyond 20 μ . The solid-state spectra were obtained using a liquid-air-cooled low-temperature cell. Up to three hours were required to cool the cell down to -100° and a similar period was employed when the cell was returned to room temperature.

The spectra obtained are shown in Figures 1-3, and the frequencies in Tables 1-3.

DESCRIPTION OF FUNDAMENTALS

All three molecules belong to the point groups C_s and therefore possess only one symmetry element, the plane of the molecule.¹⁰ The twelve normal vibrations may therefore be divided up into two classes depending on whether they are symmetric, A', or

¹⁰ G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules" D. Van Nostrand Company, New York, 1945. All the vibrations are both Raman- and infrared-active and therefore all overtone and combinations of the fundamental modes are allowed in the infrared and Raman spectra. Vibrations of the class A'' should give rise to depolarised Raman lines while those arising from the class A' vibrations should be polarised.

FIGURE 2(b). Infrared spectrum of 2-bromo-1,1-dichloroethylene liquid at 25°

The observed infrared band contours depend on the relative values of the principal moments of inertia I_A , I_B , and I_C (where $I_C > I_B > I_A$). The out-of-plane vibrations produce a dipole-moment change parallel to the axis, C, of greatest moment of inertia and should therefore give rise to infrared bands with C-type contours (ref. 10, p. 480). In the case of the A' vibrations, however, the dipole-moment change is in such a direction that it may be resolved into two components, one along each of the axes A and B. This results in the production of bands with A-B "hybrid" contours. If the moments of inertia are

FIGURE 3(a). Infrared spectrum of bromotrichloroethylene vapour at 140°

FIGURE 3(b). Infrared spectrum of bromotrichloroethylene liquid at 25°

FIGURE 3(c). Infrared spectrum of bromotrichloroethylene solid at -100°

small enough for such rotational contours to be observed they will serve to distinguish class A'' vibrational bands from those arising from A' vibrations. Unfortunately, the molecular geometry has not been determined for these three molecules but, by assuming reasonable bond lengths and angles by comparison with related molecules of known structure, the moments of inertia were calculated ¹¹ (Table 4). Also included are the parameters ρ and S of Badger and Zumwalt ¹² and the predicted separation of the P and R branches of bands with C-type contours.

TABLE 4

Moments of inertia and P-R separations for C-type bands										
	Molecular		Mome	ents of ine	ertia ª			$\Delta \nu (P, R)$		
Compound	geometry used	Ref.	$I_{\mathbf{A}}$	$I_{\mathbf{B}}$	Iσ	S	ρ	(cm1)		
CHF=CCl ₂	$\begin{array}{l} r(C-H) = 1 \cdot 084 \ {\rm \AA} \\ r(C-F) = 1 \cdot 337 \ {\rm \AA} \\ r(C=C) = 1 \cdot 326 \ {\rm \AA} \\ r(C-Cl) = 1 \cdot 691 \ {\rm \AA} \\ cCCl = 126^{\circ} \\ cCH = 122 \cdot 5^{\circ} \\ cCF = 123^{\circ} \end{array}$	3	196-13	347.16	543-29	-0.35	1.12	14—16		
CHBr=CCl ₂	$\begin{array}{l} r(C-Cl) = 1 \cdot 72 \text{ Å} \\ r(C-H) = 1 \cdot 08 \text{ Å} \\ r(C-Br) = 1 \cdot 91 \text{ Å} \\ r(C=C) = 1 \cdot 36 \text{ Å} \\ \hline CCCl = 121 \cdot 5^{\circ} \\ \hline CCH = 120^{\circ} \\ \hline CCBr = 121^{\circ} \end{array}$	}13	213.08	914-92	1128.00	-0.89	3.48	10—12		
CClBr=CCl ₂	$\begin{array}{l} r(C-Cl) = 1 \cdot 72 \ {\rm \AA} \\ r(C-Br) = 1 \cdot 91 \ {\rm \AA} \\ r(C=C) = 1 \cdot 36 \ {\rm \AA} \\ CCBr = 121^{\circ} \\ CCCl = 121 \cdot 5^{\circ} \end{array}$	}13	549·56	915-91	1465-47	-0.58	1.05	810		
	^a In units of 10^{-40} gm. cm. ² ; m (Cl) = 35.457.									

It can be seen that the moments of inertia calculated for CHF=CCl₂ are not in agreement with those published ¹³ although the same molecular dimensions have been used.

In order to describe each of the fundamental modes in these molecules it is convenient

J. O. Hirschfelder, J. Chem. Phys., 1940, 8, 431.
 R. M. Badger and L. R. Zumwalt, J. Chem. Phys., 1938, 6, 711.
 P. W. Allen and L. E. Sutton, Acta Cryst., 1950, 3, 46.

to classify them as having the general formula CXY=CCl₂. The vibrations may then be approximately described as those of the =CXY or of the =CCl₂ group. Exactly how approximate this description is will depend on the nature of the individual vibrations involved and on the normal co-ordinates for each particular vibration since these describe accurately how well localised each vibration is within the group considered. In general, however, one may reasonably assume that the description will be a good one for the =CXY group when X or Y = H and adequate when the stretching vibrations of groups are considered (including those of the =CCl₂ group). The description is probably somewhat inadequate when deformation vibrations of heavy groups are considered. Without actual normal co-ordinates it is impossible to tell which vibrations may be adequately described in this fashion and so the descriptions given here are to be regarded as qualitative only. The following symobls are used to give an approximate description of the fundamental vibrations.

	Class A'	Class $A^{\prime\prime}$	
$\nu_{a} \text{ and } \nu_{a}(CCl_{2}) \dots \nu(CX), \nu(CY), \nu(CC)$ b(CCl_{2}), b(CXY) r(CCl_{2}), r(CXY)	Symmetric and asymmetric stretch Stretch Bending Rocking	w(CCl ₂), w(CXY) t(CCl ₂) or t(CXY)	Wagging Twisting

Assignment of Observed Spectra

(i) Out-of-plane Vibrations, Class A".-Since the bands which arise from these fundamental vibrations should have C-type contours of approximately known P-R separation (Table 4) they should be easily distinguished from bands arising from class A' vibrations. In CHF=CCl₂ and CHBr=CCl₂ the wagging (=CXY) vibrations involve a hydrogen atom and as such have high frequencies close to the $w(CH_2)$ frequency ¹⁴⁻¹⁶ at 869 cm.⁻¹ in CH₂=CCl₂.

In CHCl'=CCl₂ the w(CHCl') mode has a frequency $^{16-19}$ of 783 cm.⁻¹ and thus the strong infrared, C-type bands at 798 and 770 cm.⁻¹ in CHF=CCl₂ and CHBr=CCl₂, respectively, may be assigned straightforwardly to the w(CHX) modes. These bands have P-Rseparations of 16 and 8 cm.⁻¹, respectively, in good agreement with the predicted values. The w(CCl₂) modes have, of course, much lower frequencies and it is fortunate that CHF=CCl₂ has small enough moments of inertia for the contour of an infrared band at 446 cm.⁻¹ to be easily distinguished as of the C-type. This band has a P-R separation of 14 cm.⁻¹ and fits in well with the corresponding vibrational bands $^{14-16}$ in CH₂=CCl₂ and CHCl'=CCl₂ which lie at 453 and 452 cm.⁻¹, respectively.¹⁶⁻¹⁹ Confirmation of this assignment is afforded by the fact that the corresponding Raman line has been shown to be depolarised.³ An infrared band at 454 cm.⁻¹ in CHBr=CCl₂ has a very prominent Q branch but unfortunately its P and R branches are ill-defined (see Figure 2). This band probably does belong to a vibration of the A'' class and is therefore assigned to the w(CCl₂) mode in this molecule.

Because of its high boiling point and large moments of inertia CClBr=CCl₂ is not easy to study in the gas phase. Little help with the frequency assignment was therefore forthcoming from the band shapes since the structure was usually completely unresolved. The Raman spectrum of the liquid was, however, of considerable help in fixing the low frequencies of the deformation vibrations. A strong Raman line at 417 cm.⁻¹ (weak in the infrared spectrum) fits in as the w(CCl₂) frequency especially in view of the fact that this vibrational frequency seems to change little in going from molecule to molecule (see Table 5). This assignment is supported by the assignment 1h for C₂Cl₄ where the

- H. J. Bernstein, Canad. J. Res., 1950, 28, B, 132.
 G. Allen and H. J. Bernstein, Canad. J. Chem., 1954, 32, 1044.
 S. B. Sanyal, Indian J. Phys., 1950, 24, 151.

¹⁴ H. W. Thompson and P. Torkington, Proc. Roy. Soc., 1945, A, 184, 21.
¹⁵ P. Joyner and G. Glocker, J. Chem. Phys., 1952, 20, 302.
¹⁶ J. Yarwood, Ph.D. Thesis, University of Wales, 1964.

higher-frequency wagging mode is infrared-inactive. The w(CClBr) mode is expected to have a lower frequency than the w(CCl₂) mode by virtue of the higher mass of the bromine atom. Bands are observed in the infrared spectrum of the liquid at 268 and 278 cm.⁻¹. The former is very weak and corresponds to a very strong Raman line at 270 cm.⁻¹. The infrared band at 278 cm.⁻¹ is very intense. By analogy with C₂Cl₄ the w(CClBr) mode should be strongly active in the infrared and so this mode is assigned a frequency of 278 cm.⁻¹.

TABLE 5

		TUDED 0				
Comparison of fundam	ental fre	quencies (in	cm1) in	CHX=CCl ₂	molecule	3
	CHF=CCl ₂		CHC	l=CCl ₂	CHBr=CCl ₂	
Approximate description	Gas	Liquid	Gas	Liquid	Gas	Liquid
ν (C-H)	3112	3104	3094	3086	3096	3094
ν (C=C) [']	1661	1649	1586	1582	1584	1570
b(CHX)	1295	1289	1250	1245	1214	1203
$v_{a}(CCl_{2})'$	974	958	940	930	921	906
$\nu_{s}(CCl_{2})$	668	656	629	627	622	614
$\nu(CHX)$ or $\nu(C-X)$	1152	1131	849	839	752	742
r(CHX)		470 <i>a</i>		396		342
r(CCl ₂) [']	284	282		274		245
b(CCl,)	204	211 ª		172 ª		192 ª
w(CHX)	798	796	783	779	770	765
w(CCl ₂)	446	450	452	443	454	445
tw mode	262	268	_	217 ª		140 a

" Observed in Raman spectrum of liquid.

The twisting vibration ^{1h, 16-19} in substituted ethylenes such as C_2Cl_4 and CHCl'=CCl₂ has the lowest frequency of any fundamental and so the task of assigning a frequency to this mode, sometimes very difficult, is somewhat simplified. In CHF=CCl₂ a strong band at 262 cm.⁻¹ in the infrared clearly has a *C*-type contour (see Figure 1) and is assigned to the tw mode. The twisting mode in CHCl=CCl₂ has a frequency of 217 cm.⁻¹ (assigned on the basis of polarisation measurements) and it therefore follows that the twisting mode in CHBr=CCl₂ should be lower than this (since this frequency appears to decrease as the masses attached to the C=C bond are increased).¹⁶⁻¹⁹ The line with lowest frequency in the Raman spectrum of this compound lies at 140 cm.⁻¹ and this line is therefore assigned to the twisting mode. In view of the weakness of this line, however, the assignment should be regarded as tentative. In CClBr=CCl₂ the large bulky atoms attached to the C=C skeleton make the expected twisting frequency about 100 cm.⁻¹ (the corresponding mode in C₂Cl₄ has a frequency ^{1h} of 110 cm.⁻¹). No Raman line was observed in this work near 100 cm.⁻¹ but a very weak one was observed at about 75 cm.⁻¹. In the absence of a suitable alternative this frequency is assigned to the twisting mode.

(ii) Stretching Vibrations, Class A'.—Each of the three molecules has a fundamental v(C=C) vibration. This is expected to give rise to a band between 1550 and 1800 cm.⁻¹. The molecules CHF=CCl₂ and CHBr=CCl₂ show a very strong infrared and Raman band within this region and the bands have a "mixed" or "hybrid" A-B contour. The frequencies (gas phase) of these bands are 1661 and 1584 cm.⁻¹, respectively, for CHF=CCl₂ and CHBr=CCl₂. In trichloroethylene ¹⁶⁻¹⁹ this mode produces a band at about 1590 cm.⁻¹ and therefore these two bands fit into the pattern for CHX=CCl₂ molecules. In CClBr=CCl₂ a weaker band is observed in the gas phase at 1568 cm.⁻¹ and in the liquid phase at 1563 cm.⁻¹. In C₂Cl₄ the corresponding mode ^{1h} gives rise to a band at 1570 cm.⁻¹. Since this mode is infrared-inactive in C₂Cl₄ the corresponding band in CClBr=CCl₂ would be expected to be a good deal weaker than in CHX=CCl₂ type molecules.

By comparison with $CH_2=CCl_2$,¹⁴⁻¹⁶ $CHCl'=CCl_2$,¹⁶⁻¹⁹ and C_2Cl_4 ^{1h}, the $\nu_a(CCl_2)$ and $\nu_s(CCl_2)$ modes in the molecules $CXY=CCl_2$ would be expected to have frequencies lying between 600 and 1000 cm.⁻¹. In $CH_2=CCl_2$, where the band contours are easily distinguished and identified, it has been shown that the $\nu_a(CCl_2)$ mode has the higher frequency. Thus, in $CHCl'=CCl_2$ the $\nu_a(CCl_2)$ and $\nu_s(CCl_2)$ modes have been assigned

frequencies of 940 and 629 cm.⁻¹, respectively. The corresponding modes in CHF=CCl₂ and CHBr=CCl₂ are expected to have similar frequencies and the strong infrared bands observed at 974 and 921 cm.⁻¹ are assigned to the $v_a(CCl_2)$ mode. Both bands are weak in the Raman spectrum, as is that at 940 cm.⁻¹ in the Raman spectrum of CHCl'=CCl₂. Raman lines at 665 and 622 cm.⁻¹ in the spectra of CHF=CCl₂ and CHBr=CCl₂, respectively, are assigned to the $v_s(CCl_2)$ modes. In the infrared spectrum of CClBr=CCl₂ a very strong band observed at 978 cm.⁻¹ is assigned to the $v_a(CCl_2)$ mode. No bands are observed in this compound in the 600—700-cm.⁻¹ region but a weak infrared line is produced in the liquid phase at 499 cm.⁻¹. This corresponds to a Raman line at 504 cm.⁻¹, whereas only an extremely weak Raman line is observed corresponding to the strong infrared band at 978 cm.⁻¹. Again this fits in with the data ^{1A} for C₂Cl₄ where the lowest-frequency CCl₂ stretching mode is Raman-active (at 447 cm.⁻¹) while a band assigned to one of the $v_a(CCl_2)$ modes, at 908 cm.⁻¹, is infrared-active.

It is highly probable that one of the v(CXY) modes in the CHX=CCl₂ molecules, *viz.*, v(CH), is well localised with the C–H bond. This mode is expected to have the normal frequency at about 3100 cm.⁻¹. Strong infrared and Raman bands found at 3096 and 3112 cm.⁻¹ in CHBr=CCl₂ and CHF=CCl₂, respectively, are therefore assigned to the v(C-H) mode. The other v(CXY) mode, described as the $v_a(CHX)$ or v(CX) mode in these molecules, should have a frequency corresponding approximately to a C–X stretching frequency. In CH₂=CFCl the v(C-F) frequency ^{2k, 16} is 1185 cm.⁻¹ while in CF₂=CCl₂ the $v_a(CF_2)$ and $v_s(CF_2)$ modes have frequencies of 1325 and 1032 cm.⁻¹, respectively.^{1d, 2b, 16, 20} A very strong band at 1152 cm.⁻¹ with an approximately A-type contour in CHF=CCl₂ may thus be assigned to the $v_a(CHF)$ mode. Few C–Br frequencies have been reported for substituted ethylenes, although examination of the assignments for CClBr=CF₂ and CFBr=CCl₂ show that the vibrations ^{1e, 2i} which correspond most closely to a C–Br stretching mode have frequencies of 803 and 589 cm.⁻¹. A strong band at 752 cm.⁻¹ in CHBr=CCl₂ is therefore assigned to the $v_a(CHBr)$ mode.

The v_s and $v_a(CClBr)$ modes in CClB4=CCl₂ are, of course, considerably less localised than in the compounds where a hydrogen atom is involved. In CClBr=CF₂ these vibrations have been allotted frequencies ²ⁱ of 908 and 589 cm.⁻¹, and the only fundamental bands which lie within this region in CClBr=CCl₂ are the strong infrared bands at 885 and 742 cm.⁻¹ which are therefore assigned to the v_a and v_s (CClBr) modes, respectively.

(iii) In-plane Deformation Vibrations, Class A'.—The remaining four A' class vibrations involve the bending (scissors motion) and rocking motions of the =CXY and =CCl₂ groups. In CHF=CCl₂ and CHBr=CCl₂ the b(CHX) mode is expected to have roughly the character of a normal C-H bending vibration. In CH₂=CCl₂ this bending motion ¹⁴⁻¹⁶ gives rise to a band at 1391 cm.⁻¹ while in CHCl'=CCl₂ the corresponding b(CHCl') vibrational band ¹⁶⁻¹⁹ lies at 1250 cm.⁻¹. Strong infrared bands at 1295 and 1214 cm.⁻¹ in CHF=CCl₂ and CHBr=CCl₂, respectively, may therefore safely be assigned to these modes. The r(CHX) vibrations in these molecules are likely to have the highest frequencies of the remaining deformation modes since they involve movement of a hydrogen atom. In CHCl'=CCl₂ a Raman line at 383 cm.⁻¹ has been assigned to the in-plane C-Cl deformation mode ¹⁷⁻¹⁹ and this band (observed in the liquid-phase infrared spectrum at 395 cm.⁻¹) has been assigned ¹⁶ to the r(CHCl') vibration on the basis mentioned above. The r(CHX) modes in CHF=CCl₂ and CHBr=CCl₂ are therefore expected to have frequencies which lie close to this value. The Raman spectra of liquid CHF=CCl₂ and CHBr=CCl₂ show lines at 470 and 343 cm.⁻¹, respectively, and these are assigned to the r(CHX) modes.

It now remains to assign frequencies to the in-plane deformation modes of the $=CCl_2$ and =CClBr groups. In each of the three compounds studied the fundamental bands observed and not, so far, assigned to specific modes are CHF=CCl₂, 284 and 204 cm.⁻¹; CHBr=CCl₂, 241 and 192 cm.⁻¹; CClBr=CCl₂, 319, 270, 218, and 148 cm.⁻¹ (see Tables 1-3).

From the work on $CH_2=CCl_2$ where all the fundamental bands may be distinguished by ²⁰ P. Torkington and H. W. Thompson, *Trans. Faraday Soc.*, 1945, **41**, 236.

their PQR structures ^{14-16,21} it has been shown that the order of the deformation frequencies of the $=CCl_2$ group are w > r > b. There seems no reason why this order should change on going to halogenated molecules of the type CXY=CCl₂ and, in fact, the wagging (CCl₂) vibrations in all three molecules studied agree very well with that found in CH₂=CCl₂. Furthermore, if one examines the frequency assignments for CH₂=CCl₂ and CHCl'=CCl₂ it is clear that the deformation modes of the =CCl₂ group lie in well-defined regions. These are as follows: w(CCl₂), 440-470 cm.⁻¹; r(CCl₂), 240-320 cm.⁻¹; b(CCl₂), 170-220 cm.⁻¹. With this basis it is therefore relatively easy to assign the bands at 284, 241, and 319 cm.⁻¹ in CHF=CCl₂, CHBr=CCl₂, and CClBr=CCl₂, respectively, to the r(CCl₂) mode and the bands at 204, 192, and 218, respectively, to the $b(CCl_2)$ mode. The deformation modes of the =CClBr group are expected to have lower frequencies than those of the =CCl₂ group because of the greater mass involved. Assuming that the order of the =CClBr vibrational frequencies is the same as that of the =CCl₂ group the lines at 270 and 148 cm.⁻¹ may therefore be assigned to the r(CClBr) and b(CClBr) modes, respectively.

The complete frequency assignments for the three molecules studied are given in Tables 1—3, and fundamentals are summarised in Table 5.

DISCUSSION

From Tables 1-3 it can be seen that a reasonable interpretation of the vast majority of the observed bands has been found using the fundamental frequency assignments given in Table 5. In the infrared spectrum of $CHBr=CCl_2$ a rather prominent vapour-phase band, whose intensity increased with temperature, was observed at 1832 cm.⁻¹. This may be attributed to the ν (C=O) mode in the carbonyl halide impurities (probably COCl₂ and COBr₂) formed by thermal decomposition of CHBr=CCl₂. The C=O stretching frequency in these compounds has been reported ²² as 1828 cm.⁻¹.

The solid-state spectra of both CHF=CCl₂ and CClBr=CCl₂ are reported here in addition to the gas- and liquid-phase data. Both molecules show in their solid-state spectra evidence of "lattice" vibrations which combine with internal fundamental modes to give "lattice mode" combination bands.⁵ Since the lattice vibrations ⁵ typically have frequencies less than 50 cm.⁻¹ this results in the observation of sharp side-bands accompanying the fundamental vibrational bands. Thus, the fundamental band at 1288 cm.⁻¹ in CHF=CCl₂ is accompanied in the solid phase by bands at 1314 and 1264 cm.⁻¹ (Figure 1). This particular lattice mode therefore has a frequency of 24 cm^{-1} and both the sum and difference bands have been observed. In CClBr=CCl, the fundamental band at 878 cm.⁻¹ is accompanied by combination bands at 909 and 847 cm.⁻¹ indicating a lattice mode of frequency 31 cm.⁻¹. Lattice-mode combination bands are also observed at 859, 763, and 728 cm.⁻¹ for the latter molecule, corresponding to lattice modes with frequencies of 19, 21, and 10 cm.⁻¹, respectively. Although in CHCl'=CCl₂ two examples of " correlation field " splitting 5 were observed in the solid state, 16 no evidence of such splitting was found in either CHF=CCl₂ or CClBr=CCl₂. Neither was there any evidence of the existence of more than one allotropic modification of these molecules within the temperature range -100° to -150° . (CHF=CCl₂) or -50° to -100° (CClBr=CCl₂). Owing to rapid decomposition, the quantity of CHBr=CCl₂ available was insufficient for its solid-state spectrum to be observed.

The spectra of CHF=CCl₂ reported here are more complete than those published previously³ and it is believed that the frequency assignment is more in line with the assignments published for other halogenated ethylenes. The band at 966 cm.⁻¹, for example, seems too high to belong to a b(CCF) mode, while the band at 1291 cm.⁻¹ almost certainly belongs to the b(CHF) mode in the light of the results for CHCl=CCl₂ and CHBr=CCl₂. Muelleman *et al.*³ assigned the Raman line at 284 cm.⁻¹ to the class A''

 ²¹ J. C. Evans, J. Chem. Phys., 1959, 30, 934.
 ²² J. Overend and J. R. Sherer, J. Chem. Phys., 1960, 32, 1296.

fundamental twisting mode, but could only measure the polarisation ratio of the unresolved doublet formed by the lines at 278 and 284 cm.⁻¹. The gas-phase infrared spectrum, previously unreported, shows conclusively that, in fact, the band at 262 cm^{-1} (corresponding to the Raman line at 274 cm.⁻¹ in this work) really belongs to the class A''fundamental (see Figure 1).

A good deal of interesting information regarding the normal vibrations of the CHX=CCl₂ molecules may be obtained by comparing the frequencies of the various modes in the three molecules. Table 5 and Figure 4 are included to make regular or irregular trends more apparent. Since the method of describing the fundamental modes of the CHX=CCl₂ differs from that published ¹⁷ for CHCl'=CCl₂ the data for this molecule are also included. The most interesting trend in going from CHF=CCl₂ to CHBr=CCl₂ is found in the frequencies of the =CHX group.* In the bending, rocking, and wagging modes of this group there is a systematic fall in frequency as one goes from CHF=CCl₂ to CHBr=CCl₂. This is a clear indication that each of these normal modes involves the halogen atom to a considerable extent and cannot therefore be described accurately as b(CH) or r(C-H), etc.

FIGURE 4. Variation of vibrational frequencies in the series CHXECCl₂

As the halogen atom gets heavier the frequency drops, as would be expected. It can be seen from Table 5 that the v_s (CHX) frequency drops considerably in going from CHF=CCl₂ to CHBr=CCl₂. This would be expected since this mode may be quite accurately described as v(C-X) (see Table 5) and therefore represents the stretching of a C-F, C-Cl, or C-Br bond. These have differing lengths and bond strengths and therefore very differing frequencies.

The v(C-H) mode mainly involves stretching of the C-H bond; it is expected to be relatively isolated and the changes which occur in this frequency should give a sensitive indication of how the bond character and bond strength of the C-H bond change in going from one molecule to another.

Using Kagarise's suggestion,²³ Jones et al.²⁴ have written the effective electronegativity of a =CXY group as:

$$\chi_{\text{eff}} (\text{CXY}) = \chi(\text{C})/2 + [\chi(\text{X}) + \chi(\text{Y})]/4$$

Using this relationship and the electronegativities of the atoms quoted by Gordy and Orville-Thomas ²⁵ a plot was made of v(C-H) in CHX=CCl₂ against χ_{eff} (=CHX). Figure 5 shows that such a plot is linear. It can be seen, however, that the ν (C-H) frequencies in CHCl=CCl₂ and CHBr=CCl₂ do not lie on the best straight line although they are within 2-3 cm⁻¹ of it, *i.e.*, almost within experimental error. From the plot the ν (C-H) frequency in CHI=CCl₂ can be deduced. A value of 3089 cm.⁻¹ is obtained. The experimental data are not available for this molecule and so this prediction cannot be checked at the moment.

* The r(CHX) and w(CHX) modes really involve the C=CHX group, otherwise they become rotations.

²³ R. E. Kagarise, J. Amer. Chem. Soc., 1955, 77, 1377.
 ²⁴ R. G. Jones, J. A. Ladd, and W. J. Orville-Thomas, Spectrochim. Acta, 1964, 20, 1697.
 ²⁵ W. Gordy and W. J. Orville-Thomas, J. Chem. Phys., 1956, 24, 439.

The order of the deformation frequencies of the =CHX group is found to be the same for all three molecules and is b > w > r. This is different from the order of the corresponding frequencies of the =CCl₂ group which is w > r > b, and which is confirmed to a large extent by the assignments chosen for the CHX=CCl₂ molecules.

One might expect that the various modes which mainly involve vibrations of the =CCl₂ group might remain sensibly constant for the three related molecules. Table 5 shows that only the w(CCl₂) frequencies do not change appreciably. The variation in the b and $r(CCl_2)$ frequencies is less than that for the =CHX group vibrations. The $w(CCl_2)$ mode is an out-of-plane mode which involves the wagging of the =CCl, group against the double bond. The constancy of the frequency associated with this mode is a good indication that it is well-localised. In general, however, the other deformation frequencies of the C=CCl₂ group are sensitive to changes in their molecular environment and this is a good indication that the vibrations are not entirely localised within the =CCl₂ group.

The Effect of Fluorine Substitution on the C=C Bond Length and Bond Strength in Halogenated Ethylenes.—It has been previously pointed out ²⁶ that when ethylene hydrogen

atoms are replaced by chlorine and/or bromine atoms there is a decrease in the v(C=C)vibrational frequency but that when the molecule contains one or more fluorine atoms a sharp increase in the v(C=C) frequency is observed. This is quite a general effect, as is amply demonstrated by the data given in Table 6, and has been attributed by Bellamy ²⁶ to a shortening of the C=C bond length in fluorinated ethylenes. Such shortening has been demonstrated 27,28 but since ethylene itself has the longest measured bond length of the C_2X_4 molecules it follows from this argument that both C_2Cl_4 and C_2F_4 should have ν (C=C) frequencies higher than its value (1623 cm.⁻¹) in ethylene. Other effects must therefore be involved in determining the v(C=C) frequency. Since the v(C=C) vibration is unlikely to be localised within the C=C bond in such molecules it follows that the vibrational frequency changes from one molecule to another will depend to a considerable extent on how the normal co-ordinates for the v(C=C) vibration differ from molecule to molecule. It has been suggested by Bauman²⁹ that in these molecules the influences of mechanical coupling and electrical perturbations are in competition. Considering the molecules to be " diatomic " joined by a double bond the v(C=C) frequency should decrease as the masses attached to it increase and therefore this frequency should decrease in the order

²⁶ L. J. Bellamy, "The Infra-red Spectra of Complex Molecules," 2nd edn., Methuen and Co. Ltd., London, 1954.

 ²⁷ S. Castellano and J. S. Waugh, J. Chem. Phys., 1961, **34**, 295.
 ²⁸ V. W. Laurie, J. Chem. Phys., 1961, **34**, 291.
 ²⁹ R. P. Baumann, "Absorption Spectroscopy," J. Wiley and Sons Inc., London, 1962.

Summa	ry of bon	d lengths, a	angles, and	v(C=C) freq	uencies in h	alogenated ethylenes
Compound	ν(C=C) (cm. ⁻¹)	r(C=C) (Å)	ciĉci	FĈF	нсн	Method used to determine geometry
C ₂ F ₄	1872	1.313		110°		Electron diffraction
CF ₂ =CCl ₂	1739			_		
CH ₂ =CF ₂	1728	1.312		109° 6'	121° 48′	Microwave spectroscopy
CHF=CCl ₂	1661					
CFCl=CCl ₂	1650					
CH2=CHF	1650	1.337				Electron difraction
C ₂ H ₄	1623	1.337			117° 22′	I.r. spectroscopy
C_2D_4	1515	1.337			117° 22′	
CH2=CCl2	1621	1.324	114° 30'		120° a	Electron diffraction
CH ₂ =CHC1	1608	1.38			122°	,,
CHCl=CCl ₂	1586	1.36	117°			,,
CHBr=CCl ₂	1584					
CClBr=CCl ₂	1568					
C ₂ Cl ₄	1571	1.327	113°			Electron diffraction
			^a Assu	med value.		

H,D,F,Cl,Br, and I. Electrical interactions involving electron withdrawal from the C=C bond should result in an increase in this frequency and the effect should increase with increasing electronegativity of the halogen. This should give ν (C=C) frequencies increasing in the order H,I,Br,Cl, and F. The relative magnitude of these two effects therefore determines the value of the ν (C=C) frequency. What this, in fact, means is that if one

FIGURE 6. Plot of $\chi_{eff}(CXY)$ against root-mean-square $\nu(CCl_2)$

takes the series CXY=CCl₂ and gradually increases the electronegativity of the CXY group then the frequency should first decrease in accordance with the mass factor (since when X or Y = Cl or Br the mass of the CXY group is increased) and then increase again (since if X or Y = F the electrical factor is likely to predominate). On plotting v(C=C) against χ_{eff} (CXY) the result is as shown in Figure 6. This curve supports Bauman's theory that both electrical and mechanical influences affect the (C=C) frequency. The C=C bond shortening which occurs in the series, C_2H_4 , C_2Cl_4 , C_2F_4 can be accounted for at least qualitatively by the decrease in the XCX angle as one goes from C_2H_4 to C_2F_4 in the series. This means

that the C-C σ -bond has a greater percentage S character when a =CF₂ group is present and therefore that the resulting C=C bond is shorter. Whether or not this is true in other halogenated ethylenes is not certain since accurate determinations of the bond angles have not been made. There is a very good indication however, that this is not the only variable which determines the v(C=C) frequency in these molecules.

Carbon-Halogen Vibrations in Halogenated Ethylenes.—A large number of molecules, including the ones reported here, contain a $=CCl_2$ group which is attached to a variable =CXY group. It should be possible to investigate the nature of the bonding in the $=CCl_2$ group by considering the effect on it of varying the =CXY groups.

The =CCl₂ group has two stretching vibrations. These two modes are almost certainly not completely localised within the CCl₂ group, but it can be seen from Table 7 that they give rise to bands at similar frequencies no matter what group =CXY is attached to the other end of the molecules. Nevertheless, there are changes in these frequencies and this means that the bonding in the =CCl₂ group is affected to some extent by changes in the atoms X and Y. The root-mean-square value of the $v_a(CX_2)$ and $v_s(CX_2)$ frequencies was plotted against $\chi_{eff}(CXY)$ (Figure 6). The resulting graph immediately shows four linear relationships corresponding to the series (a) CHX=CCl₂ where X = F, Cl, or Br; (b) CFX=CCl₂ where X = F, Cl, or Br; (c) CCIX=CCl₂ where X = F, Cl, or Br; and (d) CBrX=CCl₂ where X = H, Cl, or F. It should be noticed, however, that the CH₂=CCl₂ molecule does not fit well on any of these lines. It is also interesting to note that the r.m.s. $v(CCl_2)$ frequency is, in three cases out of four, highest when the =CXY group contains a

TABLE	7
-------	---

Summary of frequencies (in cm.⁻¹) of $=CCl_2$ group variations in halogenated ethlenes

D

					R.m.s.			
Compound	Ref.	$\chi_{\rm eff}$ (CXY)	$\nu_{a}(CCl_{2})$	$\nu_{s}(CCl_{2})$	$\nu(\text{CCl}_2)$	$w(CCl_2)$	r(CCl ₂)	$b(CCl_2)$
C ₂ Cl ₄	1h	2.75	1000	777	895	512	347	310
			908	447	783	288	176	235
CH2=CCl2	This work	2.33	793	600	693	453	370	297
CF,=CCl,	,,	3.23	994	619	828	475	248	192
CHF=CCl,	,,	2.77	974	668	835	446	284	204
CHCl=CCl,	,,	2.54	940	629	800	452	274	172
CHBr=CCI,		$2 \cdot 49$	921	622	785	454	245	192
CClF=CCl ₂	,,	2.99	990	522	792	403	316	177
CClBr=CCl,	,,	2.70	978	499	776	419	316	213
CBrF=CCl,	1e	2.94	965	496	767			

fluorine atom. Thus the two highest $v(CCl_2)$ frequencies belong to CHF=CCl₂ and CF₂=CCl₂. This means that the C-Cl bonds are in general strengthened by the presence of fluorine atoms, even attached to opposite ends of the molecule. The same effect can be seen by considering the $v_s(CXY)$ frequencies for CClBr=CCl₂, CHBr=CCl₂, and CBrF=CCl₂. This vibration involves mainly the stretching of the C-Br bond and the frequencies are 742, 752, and 803 cm.⁻¹, respectively. The C-Br bond is therefore also strengthened by the presence of the fluorine atom, the very strong inductive effect of which is well known. The electron-withdrawing power of this highly electronegative atom may be felt across the C=C double bond having the effect of drawing the C-Cl bonding electrons towards the double bond by induction. This results in stronger and possibly shorter C-Cl bonds with a higher average stretching frequency.

We thank the D.S.I.R. for equipment grants and the University of Wales for a Dr. Samuel Williams Studentship (to J. Y.).

THE EDWARD DAVIES CHEMICAL LABORATORY, ABERYSTWYTH, WALES.

[Present address (J. Y.): DIVISION OF PURE PHYSICS, NATIONAL RESEARCH COUNCIL, OTTAWA, CANADA.] [Received, May 10th, 1965.]